Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Anal Bioanal Chem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649516

RESUMO

Epimedium-Rhizoma drynariae (EP-RD) was a well-known herb commonly used to treat bone diseases in traditional Chinese medicine. Nevertheless, there was incomplete pharmacokinetic behavior, metabolic conversion and chemical characterization of EP-RD in vivo. Therefore, this study aimed to establish metabolic profiles combined with multicomponent pharmacokinetics to reveal the in vivo behavior of EP-RD. Firstly, the diagnostic product ions (DPIs) and neutral losses (NLs) filtering strategy combined with UHPLC-Q-Orbitrap HRMS for the in vitro chemical composition of EP-RD and metabolic profiles of plasma, urine, and feces after oral administration of EP-RD to rats were proposed to comprehensively characterize the 47 chemical compounds and the 97 exogenous in vivo (35 prototypes and 62 metabolites), and possible biotransformation pathways of EP-RD were proposed, which included phase I reactions such as hydrolysis, hydrogenation, dehydrogenation, hydroxylation, dehydroxylation, isomerization, and demethylation and phase II reactions such as glucuronidation, acetylation, methylation, and sulfation. Moreover, a UHPLC-MS/MS quantitative approach was established for the pharmacokinetic analysis of seven active components: magnoflorine, epimedin A, epimedin B, epimedin C, icariin, baohuoside II, and icariin II. Results indicated that the established method was reliably used for the quantitative study of plasma active ingredients after oral administration of EP-RD in rats. Compared to oral EP alone, the increase in area under curves and maximum plasma drug concentration (P < 0.05). This study increased the understanding of the material basis and biotransformation profiles of EP-RD in vivo, which was of great significance in exploring the pharmacological effects of EP-RD.

2.
Biomed Chromatogr ; : e5872, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638009

RESUMO

Modern studies have shown that neuroendocrine disorders caused by the dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis are one of the important pathogenetic mechanisms of kidney-yang-deficiency-syndrome (KYDS). The preventive effect of Gushudan on KYDS has been reported, but its regulatory mechanisms on the HPG axis have not been elucidated. In this study, we developed an integrated untargeted and targeted metabolomics analysis strategy to investigate the regulatory mechanism of Gushudan on the HPG axis in rats with KYDS. In untargeted metabolomics, we screened 14 potential biomarkers such as glycine, lysine, and glycerol that were significantly associated with the HPG axis. To explore the effect of changes in the levels of potential biomarkers on KYDS, all of them were quantified in targeted metabolomics. With the quantitative results, correlations between potential biomarkers and testosterone, a functional indicator of the HPG axis, were explored. The results showed that oxidative stress, inflammatory response, and energy depletion, induced by metabolic disorders in rats, were responsible for the decrease in testosterone levels. Gushudan improves metabolic disorders and restores testosterone levels, thus restoring HPG axis dysfunction. This finding elucidates the special metabolic characteristics of KYDS and the therapeutic mechanism of Gushudan from a new perspective.

3.
Anal Chem ; 96(17): 6575-6583, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38637908

RESUMO

Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 µmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.


Assuntos
Ácidos Graxos Voláteis , Metabolômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Metabolômica/métodos , Ratos , Estruturas Metalorgânicas/química , Ratos Sprague-Dawley , Masculino , Ácidos Borônicos/química
4.
J Pharm Biomed Anal ; 242: 116062, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387127

RESUMO

Gushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Ácido Butírico , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Deficiência da Energia Yang/metabolismo , Rim/metabolismo , Biomarcadores/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38219632

RESUMO

An integrated bioactive-chemical quality markers (Q-markers) discovery strategy, which was based on the LC-MS plant metabolomics, HPLC fingerprint as well as the chemical spectrum-efficacy relationships, was designed to develop a methodology for accurate and comprehensive evaluation of the quality of Acanthopanax sessiliflorus leaves (ASL). Firstly, a high resolution and sensitivity UHPLC-Q-Orbitrap MS method was used for plant metabolomics analysis to obtain component characterization and screen potential chemical markers that differentiate between different harvesting periods. A total of 53 chemical components were identified, and 8 potential chemical markers were discovered, such as sucrose, maltol and phenylalanine. Secondly, a selective HPLC fingerprint analysis of ASL and its pancreatic lipase activity assay method was successfully investigated in vitro. In the study of chemical spectrum-efficacy relationships, neochlorogenic acid, chlorogenic acid, caffeic acid and hyperoside were screened and showed the inhibited pancreatic lipase activity with IC50 values, 0.16 ± 0.01, 0.13 ± 0.01, 0.31 ± 0.01, and 0.44 ± 0.02 mg/mL, respectively, which indicated the above four constituents were selected as the bioactive-chemical Q-markers of ASL. Finally, an accurate and reliable quantitative HPLC assay was developed and validated for simultaneous determination of four bioactive-chemical Q-markers in ASL, and their content levels in ASL varied widely in different harvesting periods. The systematic and efficient screening strategy for bioactive-chemical Q-markers in this study, based on " LC-MS plant metabolomics, HPLC fingerprint, and spectrum-efficacy relationships," could have effectively improved the quality assessment level of ASL.


Assuntos
Medicamentos de Ervas Chinesas , Eleutherococcus , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Folhas de Planta/química , Lipase , Metabolômica/métodos
6.
J Chromatogr A ; 1711: 464433, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37847969

RESUMO

Agrimonia pilosa Ledeb (APL) is a significant source of inhibitors for α-glucosidase, which is an essential target enzyme for the treatment of type 2 diabetes, cancer and acquired immune deficiency syndrome. Ligand fishing is a suitable approach for the highly selective screening of bioactive substances in complex mixtures. Yet it is unable to conduct biomedical imaging screening, which is crucial for real-time identification. In this case, a bioanalytical platform combining magnetic fluorescent ligand fishing and in-situ imaging technique was established for the screening and identification of α-glucosidase inhibitors (AGIs) from APL crude extract, utilizing α-glucosidase coated CuInS2/ZnS-Fe3O4@SiO2 (AG-CIZSFS) nanocomposites as extracting material and fluorescent tracer. The AG-CIZSFS nanocomposites prepared through solvothermal and crosslinking methods displayed fast magnetic separation, excellent fluorescence performance and high enzyme activity. The tolerance of immobilized enzyme to temperature and pH was stronger than that of free enzyme. Prior to proof-of-concept with APL crude extract, a number essential parameters (glutaraldehyde concentration, immobilized time, enzyme amount, reaction solution pH, incubation temperature, incubation time, percentage of methanol in eluen, elution times and eluent volume) were optimized using an artificial test mixture. The fished ligands were identified by UPLC-MS/MS and their biological activities were preliminarily evaluated by real-time cellular morphological imaging of human colon carcinoma (HCT-116) cells based on confocal laser scanning microscope (CLSM). Their α-glucosidase inhibitory activities were further verified and studied by classical pNPG method and molecular docking. The isolated compounds exhibited significant α-glucosidase inhibitory activities with a IC50 value of 11.57 µg·mL-1. Six potential AGIs including tribuloside, ivorengenin A, tormentic acid, 1ß, 2ß, 3ß, 19α-Tetra hydroxyurs-12-en-28-oic acid, corosolic acid and pomolic acid were ultimately screened out and identified from APL crude extracts. The proposed approach, which combined highly specific screening with in-situ visual imaging, provided a powerful platform for discovering bioactive components from multi-component and multi-target traditional Chinese medicine (TCM).


Assuntos
Agrimonia , Diabetes Mellitus Tipo 2 , Nanopartículas , Humanos , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , Cromatografia Líquida , Ligantes , Dióxido de Silício , Espectrometria de Massas em Tandem , Enzimas Imobilizadas/química , Fenômenos Magnéticos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
7.
Mikrochim Acta ; 190(9): 365, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612484

RESUMO

A novel pH-responsive magnetic graphene oxide composite (MGO@PEI-BA) is proposed for the first time as an adsorbent for the rapid capture and detection of nucleosides (cytidine, uridine, guanosine, and adenosine). The morphology, structure, and magnetic properties of the composite were evaluated using various characterization techniques. The results indicated that the composite was successfully fabricated. A series of parameters that affect extraction and elution were optimized through one-factor-at-a-time and Box-Behnken design of response surface methodology (BBD-RSM). The unique layered structures and easily accessible active sites of the composite facilitated molecular transport, resulting in instantaneous equilibrium of nucleosides adsorption within 5 min. Based on this study, a magnetic dispersive micro-solid-phase extraction (MD-µ-SPE) method assisted by the MGO@PEI-BA was developed in combination with UHPLC-UV analysis for the determination of nucleosides in rat urine. Under the optimum conditions, a wide linear range (10-2000 ng mL-1), good linearity (r > 0.99), low detection limits (1-3 ng mL-1), low relative standard deviations (RSDs ≤ 3.9%), and satisfactory recoveries (82.7-96.3%) were achieved. These results demonstrate that the MGO@PEI-BA is an excellent adsorbent for extracting nucleosides from biological samples.


Assuntos
Óxido de Magnésio , Nucleosídeos , Animais , Ratos , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio
8.
Biomed Chromatogr ; 37(9): e5693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37403411

RESUMO

Gushudan (GSD) has the effect of strengthening bones and nourishing kidneys. However, its specific intervention mechanism still remains unclear. In this study, to investigate the pathogenesis of glucocorticoid-induced osteoporosis (GIOP) and the preventive mechanism of GSD on GIOP, fecal metabolomics based on 1 H-NMR and ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry method was established. The changes in endogenous metabolites and the relevant metabolic pathways in the control group, model group, and GSD treatment group were investigated via multivariate statistical analysis. As a result, a total of 39 differential metabolites were identified. Of these, 22 metabolites, such as L-methionine, guanine, and sphingosine, were newly discovered as differential metabolites of GIOP. Amino acid metabolism, energy metabolism, intestinal flora metabolism, and lipid metabolism were significantly changed in the fecal profiles of GIOP rats, and GSD could play an anti-osteoporosis role by regulating these metabolic pathways. Finally, compared with our previous study of the GSD to prevent kidney yang deficiency syndrome, this study suggested that there were some identical differential metabolites and metabolic pathways. It showed that there was some correlation among the metabolic profiles of the intestine, kidney, and bone in GIOP rats. Therefore, this study offered new insights into the in-depth understanding of the pathogenesis of GIOP and the intervention mechanism of GSD.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Ratos , Animais , Glucocorticoides , Metabolômica/métodos , Metaboloma , Medicamentos de Ervas Chinesas/farmacologia , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Biomarcadores/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37247535

RESUMO

Gushudan (GSD), a compound prescription on the basis of traditional Chinese medicine (TCM) theory and clinical practice, has been used in the treatment of osteoporosis (OP) for many years. Although studies have shown that GSD can treat OP, there is a lack of systematic screening method to explore the bioactive components, which are still unclear. Therefore, this study was aimed to establish an integrated method to screen and determine bioactive ingredients of GSD in the treatment of OP by serum pharmacochemistry, network pharmacology and pharmacokinetics. Firstly, 112 components of the GSD extract and 90 serum migrating constituents were identified by the ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS), most of which were derived from flavonoids, tanshinones, coumarins and organic acids. Secondly, based on the network pharmacological analysis of the serum migrating constituents, 37 core targets and 20 main pathways related to both GSD and OP were obtained. More importantly, 7 bioactive ingredients were further screened as the PK markers by the network topology parameters including icariin, icariside II, isopimpinellin, bergapten, imperatorin, osthole and tanshinone IIA. Finally, a sensitive and accurate quantitative method based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established and validated for simultaneous determination of the 7 bioactive ingredients in the rat plasma after oral administration of GSD extract, which was then applied to pharmacokinetic study. Besides, the overall pharmacokinetic characteristics were further calculated: Cmax was 180.52 ± 31.18 ng/mL, Tmax was 0.46 ± 0.20 h, t1/2 was 4.09 ± 0.39 h, AUC0-∞ was 567.24 ± 65.29 ng·h/mL, which displayed quick absorption and medium elimination in rats after oral administration of GSD extract. This study provided a new and holistic insight for exploring bioactive constituents and main targets to decode the therapeutic material basis of GSD against OP.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Farmacologia em Rede , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Osteoporose/tratamento farmacológico
10.
J Sep Sci ; 46(13): e2300124, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37070550

RESUMO

Kidney-yang-deficiency-syndrome is a neuroendocrine disease caused by the dysfunction of the adrenal-pituitary-target gland axis. Gushudan is a traditional Chinese medicine prescription with the functions of tonifying the kidney and strengthening bone, and its bone-strengthening effect has been confirmed by previous anti-osteoporosis research. However, its kidney-tonifying mechanism has not been clear so far. In this study, renal metabolomics and lipidomics based on gas chromatography-mass spectrometry and ultra-high-performance liquid chromatography-high resolution mass spectrometry were integrated to find the metabolic disorders in kidney-yang-deficiency-syndrome rats. Protein precipitation and liquid-liquid extraction were used to extract metabolome and lipidome from the kidney. Gushudan regulated abnormal levels of amino acids, lipids, purines, and carbohydrates, such as L-arginine, hypoxanine, stearic acid, and phosphatidylethanolamine (P-18:1/20:4), which had effects on many metabolic pathways, such as glycerophospholipid metabolism, sphingolipid metabolism, glycine, serine and threonine metabolism and purine metabolism, and so forth. By integrating metabolomics and lipidomics, this study comprehensively revealed the abnormal metabolic activities of amino acids, lipids, and nucleotides in kidney-yang-deficiency-syndrome, and the metabolic regulation mechanism of Gushudan in preventing kidney-yang-deficiency-syndrome, as well as the improvement of Gushudan in maintaining renal cell structure, mitochondrial function, and energy supply, which also provided some new evidence and connotation for "kidney-bone" axis.


Assuntos
Medicamentos de Ervas Chinesas , Lipidômica , Ratos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Rim/metabolismo , Deficiência da Energia Yang/metabolismo , Espectrometria de Massas/métodos , Aminoácidos , Lipídeos , Biomarcadores/metabolismo
11.
Front Pharmacol ; 14: 1133560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007028

RESUMO

Background: Patients diagnosed with influenza and upper respiratory tract infections (URTIs) have similar clinical manifestations and biochemical indices and a low detection rate of viral pathogens, mixed infection with diverse respiratory viruses, and targeted antiviral treatment difficulty in the early stage. According to the treatment strategy of "homotherapy for heteropathy" in traditional Chinese medicine (TCM), different diseases with the same clinical symptoms can be treated with the same medicines. Qingfei Dayuan granules (QFDY), a type of Chinese herbal preparation included in the TCM Diagnosis and Treatment Protocol for COVID-19 of Hubei Province issued by the Health Commission of Hubei Province in 2021, are recommended for patients suffering from COVID-19 with symptoms of fever, cough, and fatigue, among others. Additionally, recent studies have shown that QFDY effectively alleviates fever, cough, and other clinical symptoms in patients with influenza and URTIs. Materials and methods: The study was designed as a multicenter, randomized, double-blind, placebo-controlled clinical trial for treatment for influenza and URTIs manifested by pulmonary heat-toxin syndrome (PHTS) with QFDY. A total of 220 eligible patients were enrolled from eight first-class hospitals in five cities of Hubei Province in China and randomly assigned to receive either 15 g of QFDY or a placebo three times a day for 5 days. The primary outcome was the complete fever relief time. Secondary outcomes included efficacy evaluation of TCM syndromes, scores of TCM syndromes, cure rate of each single symptom, incidence of comorbidities and progression to severe conditions, combined medications, and laboratory tests. Safety evaluations mainly involved adverse events (AEs) and changes in vital signs during the study. Results: Compared with the placebo group, the complete fever relief time was shorter in the QFDY group, 24 h (12.0, 48.0) in the full analysis set (FAS) and 24 h (12.0, 49.5) in the per-protocol set (PPS) (p ≤ 0.001). After a 3-day treatment, the clinical recovery rate (22.3% in the FAS and 21.6% in the PPS) and cure rate of cough (38.6% in the FAS and 37.9% in the PPS), a stuffy and running nose, and sneezing (60.0% in the FAS and 59.5% in the PPS) in the QFDY group were higher than those in the placebo group (p < 0.05). The number of patients taking antibiotics for more than 24 h in the placebo group (nine cases) was significantly higher than that in the QFDY group (one case) (p < 0.05). There were no significant differences between the two groups in terms of scores of TCM syndromes, incidence of comorbidities or progression to severe conditions, combined use of acetaminophen tablets or phlegm-resolving medicines, and laboratory tests (p > 0.05). Meanwhile, no significant difference was found in the incidence of AEs and vital signs between the two groups (p > 0.05). Conclusion: The trial showed that QFDY was an effective and safe treatment modality for influenza and URTIs manifested by PHTS because it shortened the complete fever relief time, accelerated clinical recovery, and alleviated symptoms such as cough, a stuffy and running nose, and sneezing during the course of treatment. Clinical trial registration: https://www.chictr.org.cn/showproj.aspx?proj=131702, identifier ChiCTR2100049695.

12.
J Ethnopharmacol ; 312: 116444, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061068

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dyslipidemia is the leading risk factor of atherosclerosis (AS). Adipose tissue macrophages (ATMs) can regulate postprandial cholesterol levels via uptake and hydrolyzation of lipids and regulation of macrophage cholesterol efflux (MCE). San-wei-tan-xiang (SWTX) capsule, a Traditional Chinese medicine, exerts clinical benefits in patients with atherosclerotic cardiovascular diseases. AIM OF THE STUDY: This work is aimed to evaluate the chemical ingredients and mechanisms of SWTX in anti-AS. MATERIALS AND METHODS: The chemical ingredients of SWTX identified by liquid chromatography coupled with tandem mass spectrometry were used for network pharmacological analysis. The atheroprotective function of SWTX was evaluated in ApoE-/- mice fed a cholesterol-enriched diet. RESULTS: The chemical ingredients identified in SWTX were predicated to be important for lipid metabolism and AS. Animals studies suggested that SWTX effectively attenuated the atherosclerotic plaque growth, elevated postprandial HDL cholesterol levels, elevated the proportion of Tim4 and CD36-expressed ATMs, and upregulated the uptake of lipid and lysosomal activity in ATMs. SWTX-induced elevation of postprandial HDL cholesterol levels was dependent on increased lysosomal activity, since chloroquine, an inhibitor of lysosomal function, blocked the effect of SWTX. Lastly, some predicated bioactive compounds in SWTX can elevate lysosomal activity in vitro. CONCLUSION: SWTX could attenuate atherosclerotic plaque formation by elevating lysosomal activity and enhancing MCE in ATMs.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , HDL-Colesterol , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/etiologia , Macrófagos , Colesterol/metabolismo , Lisossomos/metabolismo , Apolipoproteínas E
13.
Biomed Chromatogr ; 37(3): e5569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527197

RESUMO

Kidney-yang-deficiency-syndrome (KYDS) is a metabolic disease caused by neuroendocrine disorder. Gushudan (GSD) is a traditional Chinese medicine prescription with the effect of nourishing kidney and strengthening bones. In this study, the mechanism of preventive effect of GSD on KYDS was explored by integrating metabolomics and serum pharmacochemistry. Reversed-phase/hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-Quadrupole-Orbitrap high-resolution mass spectrometry (RP/HILIC-UHPLC-Q-Orbitrap HRMS)-based serum metabolomics indicated metabolic disturbances of KYDS rats, and 50 potential biomarkers including l-threonine, succinic acid and phytosphingosine were obtained, which were mainly involved in alanine, aspartate and glutamate metabolism, citrate cycle (tricarboxylic acid cycle) and glycerophospholipid metabolism, among others. Serum pharmacochemistry identified 29 prototypical ingredients and 9 metabolites of GSD after administration, such as icaritin and xanthotoxol. The combination of 10 serum migration ingredients in GSD, including icaritin and osthole, with 7 important targets, including AKT serine/threonine kinase 1 (AKT1) and MAPK14, was found to be key for GSD to prevent KYDS in the network pharmacology study. This study provided a new idea for the research of pathogenesis of diseases and the pharmacodynamic mechanism of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Deficiência da Energia Yang/metabolismo , Rim/metabolismo , Biomarcadores , Cromatografia Líquida de Alta Pressão
14.
Anal Bioanal Chem ; 415(5): 801-808, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36482083

RESUMO

Ceramides are important intermediates in the metabolism of sphingolipids. High-throughput liquid chromatography-mass spectrometry has been used extensively for monitoring the levels of serological ceramides, but is still limited by inadequate coverage or lack of sensitivity. Herein, a rapid, sensitive, and high-throughput isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry (IDLC-nESI-MS/MS) method was developed and verified for accurate quantification of 41 ceramides, involving ceramides with C16-20 sphingosine, dihydro-ceramide, and dehydro-ceramide. This method was validated with excellent linearity (R2 > 0.99) and good recovery in the range of 90-110%. Intra- and inter-day imprecision were below 5.57% and 7.83% respectively. The improved high-throughput quantitative method developed in this study may aid in the accurate characterization of ceramides for understanding ceramide biology and application in disease diagnosis.


Assuntos
Ceramidas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Ceramidas/análise , Esfingolipídeos , Isótopos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Se Pu ; 40(10): 944-951, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36222258

RESUMO

A new method for sample pretreatment using improved QuEChERs was established, and 289 organic pollutants with health risks could be identified and quantified through gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap HRMS). A high-resolution database of 289 environmental pollutants belonging to ten categories, including organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), polychlorinated biphenyls (PCBs), and other agricultural chemicals (ACs), was established for the non-targeted screening and quantitative analysis. A simple method for biological sample preparation using improved QuEChERs was proposed by combining a conventional QuEChERs method and a column purification method. After purification using a Florisil column, the lipid content was reduced by 99.9%, which significantly reduced the interference of the matrix effect observed during the analysis. Furthermore, simultaneous high-accuracy qualitative screening and quantitative analysis of the target compounds were performed through high-resolution mass spectrometry (60000 resolution) conducted in the full scan mode. The limits of quantification were 0.56-57.8 pg/g, presenting a large linear range (~106), and the recovery range was 40%-120%. Due to the high-resolution and sensitivity of Q Exactive GC-Orbitrap HRMS, the limits of quantification of the target compounds were significantly lower than those achieved through methods based on conventional chromatography and mass spectrometry. Moreover, ultratrace organic contaminants that cannot be detected by conventional methods can be accurately quantified by the proposed method. Sea cucumber samples collected at the breeding site were analyzed using the proposed high-coverage multi-objective analytical method, and more than 100 types of organic pollutants were detected; the mean contents of PAHs, ACs, PAEs, and OCPs were 157.8, 153.2, 64.4, and 46.4 ng/g dw, respectively, which were higher than those of other pollutants. Some new contaminants, such as 9-chlorofluorene, 5-chloroacenaphthene, and 3-methylcholanthrene, were detected at very low contents for the first time in the sea cucumber samples. The proposed method is simple and efficient, allows the detection of pollutants at very low contents, and provides accurate and reliable results. Thus, this high-coverage multi-objective analytical method can be widely used for broad-spectrum screening and accurate quantification of contaminants in various aquatic products, providing technical support for food safety control.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Pepinos-do-Mar , Animais , Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Lipídeos , Espectrometria de Massas , Metilcolantreno/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
16.
J Sep Sci ; 45(23): 4209-4223, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200630

RESUMO

Yaobitong capsule is a compound preparation of traditional Chinese medicine that has been widely applied in disease treatment. To insight into the therapeutic effects of the yaobitong capsule on rheumatoid arthritis and its mechanisms, a liquid chromatography-mass spectrometry untargeted urine metabolomics method was established and validated, combined with the quantitative analysis of seven potential amino acid biomarkers in rat urine. The results showed that 35 potential biomarkers were found in untargeted metabonomics, which was related to amino acid metabolism, lipid metabolism, energy metabolism, and purine metabolism. Moreover, seven amino acid biomarkers, including proline, methionine, glutamic acid, histidine, lysine, cysteine, and glutamine, were further separated and quantified in multiple-reaction monitoring with a positive ionization mode. Then the linearity, standard curves, accuracy, precision, limit of quantitation, recovery, stability, carryover, and matrix effect of the quantitative method were examined. Finally, the validated method was successfully applied to investigate the urine samples of the control group, adjuvant-induced rheumatoid arthritis model group, yaobitong capsule-treatment group, and positive control group in rats. The contents of seven amino acids in different groups showed significant differences. Consequently, our findings revealed that the yaobitong capsule exerted therapeutic effects on rheumatoid arthritis rats by maintaining amino acid homeostasis.


Assuntos
Artrite Reumatoide , Ratos , Animais , Espectrometria de Massas , Cromatografia Líquida , Artrite Reumatoide/tratamento farmacológico , Aminoácidos
17.
Anal Methods ; 14(43): 4377-4385, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36281652

RESUMO

A green, fast, and efficient pH-induced natural deep eutectic solvent combined with vortex-assisted dispersive liquid-liquid microextraction method (pH-NADES-VA-DLLME) followed by HPLC was established for determination of ofloxacin (OFL), ciprofloxacin (CIP) and enrofloxacin (ENR) in honey. In this method, NaOH, as an emulsifier, can increase the contact area between the NADES and the sample solution, which can efficiently improve the extraction efficiency of the analytes. Moreover, HCl acts as the phase separation agent without centrifugation in the process, which can greatly enhance the efficiency of the sample analysis process. In addition, the main factors affecting the extraction effect were optimized by single factor experiments. Under the optimal conditions, the limits of detection (LODs), the limits of quantification (LOQs) and recoveries were in the range of 0.004-0.015 µg mL-1, 0.012-0.050 µg mL-1, and 98.0-112.5%, respectively. The RSD values of intra-day and inter-day precisions were no more than 5.5% and 6.0%, respectively. The developed method was successfully applied to determine the three quinolone antibiotics in honey.


Assuntos
Mel , Microextração em Fase Líquida , Microextração em Fase Líquida/métodos , Solventes , Mel/análise , Solventes Eutéticos Profundos , Antibacterianos/análise , Ofloxacino/análise , Concentração de Íons de Hidrogênio
18.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235015

RESUMO

Surfactants are one of the major pollutants in laundry powder, which have an impact on the environment and human health. Carbon quantum dots (CQDs) are spherical zero-dimensional fluorescent nanoparticles with great potential for fluorescent probing, electrochemical biosensing and ion sensing. Herein, a bottom-up approach was developed for the synthesis of CQDs from biomass to detect laundry detergent and laundry powder. Waste chicken bones were used as carbon precursors after being dried, crushed and reacted with pure water at 180 °C for 4 h to generate CQDs, which exhibited a monodisperse quasi-spherical structure with an average particle size of 3.2 ± 0.2 nm. Functional groups, including -OH, C=O, C=C and C-O, were identified on the surface of the prepared CQDs. The optimal fluorescence excitation wavelength of the yellow-brown CQDs was 380 nm, with a corresponding emission peak at 465 nm. CQDs did not significantly increase cell death in multiple cell lines at concentrations of 200 µg·mL-1. Fluorescence enhancement of CQDs was observed after addition of sodium dodecyl benzene sulphonate, a major anionic surfactant in laundry powder. A linear relationship between fluorescence enhancement CQDs and the concentration of laundry powder was established. Thus, a hydrothermal method was developed to generate CQDs from waste biomass that may be used as a fluorescent probe to detect laundry powder.


Assuntos
Poluentes Ambientais , Pontos Quânticos , Carbono/química , Detergentes , Corantes Fluorescentes/química , Humanos , Pós , Pontos Quânticos/química , Água
19.
Mikrochim Acta ; 189(8): 283, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35851827

RESUMO

An efficient analysis platform composed of nanozyme-based hydrogel kit and smartphone was constructed for on-site detection of uric acid (UA) in a rapid and realiable manner. CuCo2S4 nanoparticles (CuCo2S4 NPs) as a peroxidase mimic were successfully prepared and the peroxidase-like activity and catalytic mechanism were studied in detail. The hydrogen peroxide (H2O2) stimulus-responsive nanozyme-based hydrogel kit was manufactured by integrating agarose, CuCo2S4 NPs, and 3,3',5,5'-tetramethylbenzidine (TMB) into the cap of centrifuge tube. H2O2 generated via UA oxidation acts as stimulus signal, which triggers the oxidation of TMB to form blue product (oxTMB) under the catalysis of CuCo2S4 NPs, resulting in the color response of the constructed kit. The color image of the kit was captured by a smartphone built-in camera and converted into color intensity using ImageJ software, thus achieving the quantitative determination of UA. The portable kit possesses high selectivity and was used to monitor UA in human serum with satisfactory results (recovery was in the range 95.8-107.3% and RSD was not greater than 4.6%). The established sensing platform is convenient and reliable, which provides a new strategy for point-of-care testing of UA and has a broad prospect in the fields of chemical sensing and biomedical.


Assuntos
Colorimetria , Ácido Úrico , Colorimetria/métodos , Humanos , Hidrogéis , Peróxido de Hidrogênio , Peroxidases , Testes Imediatos , Ácido Úrico/análise
20.
J Pharm Biomed Anal ; 217: 114843, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35623116

RESUMO

Based on traditional Chinese medicine (TCM) theory, kidney is regarded as governing the bones and dominating the storage of essence ('jing' in Chinese). Gushudan (GSD) is a traditional Chinese medicine prescription with the effects of strengthening bone and nourishing kidney, which has been used to treat osteoporosis for years. Several anti-osteoporosis effects of GSD have been investigated based on metabolomics in previous studies. However, the specific mechanism of GSD on kidney tonifying and its alterations in gut microbiota are still unclear. In this study, 1H NMR fecal metabolomics and 16 S rRNA gene sequencing technology were integrated to comprehensively explore the microbiota and metabolic changes in kidney-yang-deficiency-syndrome (KYDS) rats and to elucidate the protective mechanism of GSD through the gut-kidney axis. GSD significantly regulated the levels of 12 out of 31 potential metabolites and the abundance of 11 out of 16 potential microbial biomarkers related to KYDS, respectively. Fecal metabolomics showed that GSD could reserve the abnormal levels of gut microbial-mediated metabolites of KYDS rats, such as tryptophan, lysine, dimethylamine, creatinine, acetate and butyrate, which mainly involved in amino acid metabolism, methylamine metabolism, energy metabolism and short-chain fatty acid metabolism. Specifically, GSD could promote butyrate-producing bacteria g_Lachnospiraceae_NK4A136_group and lactate-producing bacteria g_Lactobacillus. Interestingly, there was a strong relationship between altered fecal metabolites and perturbed intestinal microflora in genus. For example,lysine was negatively correlated with g_Lactobacillus, while acetate was positively correlated with g_Barnesiella. In conclusion, the study showed that the gut-kidney axis had scientific implications, which not only offered new insights into the in-depth understanding of the pathogenesis of KYDS, but also provided further evidence for the efficacy evaluation of GSD.


Assuntos
Lisina , Deficiência da Energia Yang , Animais , Butiratos , Medicamentos de Ervas Chinesas , Genes de RNAr , Rim , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , RNA Ribossômico 16S/genética , Ratos , Deficiência da Energia Yang/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA